Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 659: 432-438, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183809

RESUMO

Electrocatalytic NO2- reduction to NH3 (NO2RR) holds great promise as a green method for high-efficiency NH3 production. Herein, an Rh single-atom catalyst where isolated Rh supported on defective BN nanosheets (Rh1/BN) is reported to exhibit the exceptional NO2RR activity and selectivity. Extensive experimental and theoretical studies unveil that the high NO2RR performance of Rh1/BN arises from the single-atom Rh sites, which not only promote the activation and hydrogenation of NO2--to-NH3 process, but also hamper the undesired hydrogen evolution. Consequently, Rh1/BN assembled in a flow cell exhibits the highest NH3 yield rate of 2165.4 µmol h-1 cm-2 and FENH3 of 97.83 % at a high current density of 355.7 mA cm-2, ranking it the most efficient catalysts for NO2--to-NH3 conversion.

2.
Nano Lett ; 24(2): 541-548, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38185876

RESUMO

Electrochemical reduction of NO to NH3 (NORR) offers a prospective method for efficient NH3 electrosynthesis. Herein, we first design single-atom Pd-alloyed Cu (Pd1Cu) as an efficient and robust NORR catalyst at industrial-level current densities (>0.2 A cm-2). Operando spectroscopic characterizations and theoretical computations unveil that Pd1 strongly electronically couples its adjacent two Cu atoms (Pd1Cu2) to enhance the NO activation while promoting the NO-to-NH3 protonation energetics and suppressing the competitive hydrogen evolution. Consequently, the flow cell assembled with Pd1Cu exhibits an unprecedented NH3 yield rate of 1341.3 µmol h-1 cm-2 and NH3-Faradaic efficiency of 85.5% at an industrial-level current density of 210.3 mA cm-2, together with an excellent long-term durability for 200 h of electrolysis, representing one of the highest NORR performances on record.

3.
Health Phys ; 126(3): 134-140, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117190

RESUMO

ABSTRACT: Quantification of gamma-H2AX foci can estimate exposure to ionizing radiation. Most nuclear and radiation accidents are partial-body irradiation, and the doses estimated using the total-body irradiation dose estimation formula are often lower than the actual dose. To evaluate the dose-response relation of gamma-H2AX foci in human peripheral blood lymphocytes after partial-body irradiation and establish a simple and high throughput model to estimate partial-body irradiation dose, we collected human peripheral blood and irradiated with 0-, 0.5-, 1-, 2-, 3-, 4-, 5-, 6-, and 8-Gy gamma rays to simulate total-body irradiation in vitro. Gamma-H2AX foci were quantitated by flow cytometry at 1 h after irradiation, and a dose-response curve was established for total-body irradiation dose estimation. Then, a partial-body irradiation dose-response calibration curve was established by adding calibration coefficients based on the Dolphin method. To reflect the data distribution of all doses more realistically, the partial-body irradiation dose-response calibration curve was divided into two sections. In addition, partial-body irradiation was simulated in vitro, and the PBI data were substituted into curves to verify the accuracy of the two partial-body irradiation calibration curves. Results showed that the dose estimation variations were all less than 30% except the 25% partial-body irradiation group at 1 Gy, and the partial-body irradiation calibration dose-response curves were YF 1 = - 3.444 x 2 + 18.532 x + 3.109, R 2 = 0.92 (YF ≤ 27.95); YF 2 = - 2.704 x 2 + 37.97 x - 56.45, R 2 = 0.86 (YF > 27.95). Results also suggested that the partial-body irradiation dose-response calibration curve based on the gamma-H2AX foci quantification in human peripheral blood lymphocytes is a simple and high throughput model to assess partial-body irradiation dose.


Assuntos
Histonas , Linfócitos , Humanos , Relação Dose-Resposta à Radiação , Linfócitos/efeitos da radiação , Radiação Ionizante , Raios gama
4.
Chem Commun (Camb) ; 59(58): 8961-8964, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37378464

RESUMO

We demonstrate Pd metallene as an efficient catalyst for electrocatalytic NO reduction to NH3 (NORR), showing the maximum NO-to-NH3 faradaic efficiency of 89.6% with a corresponding NH3 yield rate of 112.5 µmol h-1 cm-2 at -0.3 V in neutral media. Theoretical calculations unveil that NO can be effectively activated and hydrogenated on the hcp site of Pd through a mixed pathway with a low energy barrier.

5.
J Org Chem ; 88(7): 4066-4076, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36989420

RESUMO

It is the first time that the readily available protonated 2,2'-bipyridinium salts are used as Brønsted acid catalysts to accelerate a series of organic transformations that included the hydration of aromatic alkynes, etherification of alcohols, cyclotrimerization of aliphatic aldehydes, Ritter reaction, Mannich reaction, Biginelli reaction, preparation of substituted alkenes from alcohols, synthesis of spirooxindole, bisindolylmethane, and noncyclized tetraketone with good to excellent yields. These results strongly suggest that there exists enormous potentiality in the development of the protonated 2,2'-bipyridinium catalytic system.

6.
Biomarkers ; 27(5): 448-460, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35315697

RESUMO

INTRODUCTION: In the event of radiological accidents and cancer radiotherapies in the clinic, the gastrointestinal (GI) system is vulnerable to ionizing radiation and shows GI injury. Accessible biomarkers may provide means to predict, evaluate, and treat GI tissue damage. The current study investigated radiation GI injury biomarkers in rat plasma. MATERIAL AND METHODS: High-coverage targeted lipidomics was employed to profile lipidome perturbations at 72 h after 0, 1, 2, 3, 5, and 8 Gy (60Co γ-rays at 1 Gy/min) total-body irradiation in male rat jejunum. The results were correlated with previous plasma screening outcomes. RESULTS: In total, 93 differential metabolites and 28 linear dose-responsive metabolites were screened in the jejunum. Moreover, 52 lipid species with significant differences both in jejunum and plasma were obtained. Three lipid species with linear dose-response relationship both in jejunum and plasma were put forth, which exhibited good to excellent sensitivity and specificity in triaging different exposure levels. DISCUSSION: The linear dose-effect relationship of lipid metabolites in the jejunum and the triage performance of radiation GI injury biomarkers in plasma were studied for the first time. CONCLUSION: The present study can provide insights into expanded biomarkers of IR-mediated GI injury and minimally invasive assays for evaluation.


Assuntos
Lipidômica , Irradiação Corporal Total , Animais , Biomarcadores/metabolismo , Raios gama , Lipídeos , Masculino , Ratos
7.
Materials (Basel) ; 7(1): 218-231, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28788452

RESUMO

A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...